Nonlinear dynamic systems modeling using Gaussian processes: Predicting ionospheric total electron content over South Africa
نویسندگان
چکیده
[1] Two different implementations of Gaussian process (GP) models are proposed to estimate the vertical total electron content (TEC) from dual frequency Global Positioning System (GPS) measurements. The model falseness of GP and neural network models are compared using daily GPS TEC data from Sutherland, South Africa, and it is shown that the proposed GP models exhibit superior model falseness. The GP approach has several advantages over previously developed neural network approaches, which include seamless incorporation of prior knowledge, a theoretically principled method for determining the much smaller number of free model parameters, the provision of estimates of the model uncertainty, and a more intuitive interpretability of the model.
منابع مشابه
Variation of ionospheric slab thickness over South Africa
Ionospheric slab thickness is defined as the ratio of TEC to maximum electron density of the F-region (NmF2), proportional to the square of the F2-layer critical frequency (foF2). It is an important parameter in that it is linearly correlated with scale height of the ionosphere, which is related to electron density profile. It also reflects variation of the neutral temperature. Therefore, ionos...
متن کاملTopside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa
Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity) by each individual mission. Recently, methods for i...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملPrediction of Total Electron Content over South Africa Using Global Positioning System and Neural Networks
The Global Positioning System (GPS) makes it possible to study the dynamics of the ionosphere by supplementing ionospheric studies carried out using various techniques including ionosondes, incoherent scatter radars and low earth orbit satellites. Total electron content derived from GPS data (GPS TEC) is a key parameter characterising the ionosphere. Its time evolution provides an indication of...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011